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1. Introduction.- 7"T

There have been three main development to come from the research supported in

this project. These concern:.

e Riemann problems and nonlinear wave interactions for real materials, including

material strength properties./

Riemann problems and chaotic mixing for conservation laws in general. - Y
. Development of three dimensional and parallel processing front tracking algo-

rithms.

Most of the work performed under this project has focused on the first of these

developments.
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2. Wave Interactions for Real Materials

Real material properties define nonlinear terms in the equations of continuous

media. They determine the nonlinear waves, wave interactions and wave diffraction pat-

terns which the media support. The study of Riemann problems for nonlinear elasticity

produced several interesting results, and clarified the mathematical issues associated with

material strength computations. A series expansion in powers of the deviatoric (i.e. shear

as opposed to compressive) strain identified standard models of constitutive relations as

the leading order nonlinear term [2]. The analysis retained full rotation covariance and

allowed an arbitrary form for the isotropic (pressure) contributions to the equation of

state. In particular, the isotropic strains were not assumed to be small. Thus this treat-

ment of small deviatoric strain seems to be more fundamental than other analyses avail-

able in the literature. It explained why only one shear parameter (the shear modulus) is

used to characterize material strength, rather than the two parameters predicted to be

necessary on group invariance grounds. In fact a second parameter will arise if higher

order terms in the deviatoric strain are retained.

Wave curves and the Riemann solution were examined, assuming the above consti-

tutive law. A special rotational symmetry observed by Ting and Tang [12] for the half

space (Goursat) Riemann problem was found not to occur for the full Riemann problem

[3], but enough was left from this symmetry to allow a simplification of the solution for

the Riemann problem.

The theoretical analysis of the Riemann solution led to a numerical algorithm for its

solution. The idea was to break the waves and solution variables into blocks correspond-

ing to pressure and shear, respectively. Within each block a solution procedure of

Godunov type was used. Because of the reduction to subblocks, the nonlinear root solv-

ing, which is the crucial step in the Godunov iterative algorithm, takes place in a lower

dimensional space (one dimension for pressure waves and one or two dimensions for

shear waves -- depending on whether the deformation is uniaxial and the material is
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isotropic). This reduction in dimension is esseential for construction of a robust algo-

rithm. In fact the algorithm was fully successful in the isotropic uniaxial case only, in

which case the two Godunov iterations occur in one dimensional spaces [3]. One dimen-

sional root solving can be based on monotonicity and betweenness properties, and can be

guaranteed to be robust in the large. The full determination of a robust algorithm for the

general case is still an open problem.

The umbilic point predicted by Ting and Tang [12] was found to lie well outside the

yield surface, and thus in the plastic deformation region, for many common materials [4].

Since the equations used to predict the occurrence of the umbilic point were purely elas-

tic, the physical validity of this phenomena remains undetermined. One dimensional

front tracking for elastic waves was tested, and compared to finite difference (higher

order Godunov) solutions. The latter were found to be highly diffusive. The very stiff

equation of state for metals (i.e. the small compressibility) makes the wave structure

close to linear, and leads to much larger values of artificial diffusion than is commonly

observed in gas dynamics computations. For this reason the advantages of front tracking

for these problems is especially striking [4].

A second aspect of real materials considered within this project was the solution of

Riemann problems with a real equation of state. An equation of state (EOS) is a func-

tional relation between the thermodynamic variables (e.g. density, pressure, temperature,

specific internal energy and specific entropy) that describe the state of a gas. Two of

these variables are independent and the equation of state describes the remaining quanti-

ties when any two are given.

The Los Alamos National Laboratory program SESAME is a comprehensive EOS

which supports 97 materials and is derived from a variety of analytic models and experi-

mental data bases. On a rectangular grid of densities and temperatures, the pressure and

specific internal energy are given at each grid point (p, T). Pressures and energies at

intermediate densities and temperatures are found by interpolation. An implementation of
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the SESAME program into our gas dynamics code has been completed, [11]. Efficiency

considerations are important, and were addressed by the precompution of quantities used

repeatedly.

The following quantities are important to the Riemann solution and are precom-

puted and tabulated: the entropy, S, the adiabatic and Grueneisen coefficients 7 and F,

and the Riemann invariant

r = f(pc)- dP IS = const •

Furthermore, the originally specified variables p and T are not convenient for all aspects

of the Riemann solution, and so additional tables with inverted independent variables

(p,e), (p,S), and (P,S) are constructed. The inversions are constructed by a bisection

method.

In the case of phase transitions, the inversions and especially the Riemann solution

is complicated by discontinuities in derivatives of the thermodynamic variables across

phase boundaries, see [1].

3. General Theory of Conservation Laws

As a minor, or side aspect, of the work on this project, the general theory of conser-

vation laws was considered. The reason for this part of the study was that some parts of

this subject were being approached incorrectly by the workers in this area, and we judged

it useful to identify and explain promising directions for research. The work on the gen-

eral theory of conservation laws identified [8] a long standing error in the modeling of

phase transitions, and revised common ideas about uniqueness and well posedness of

solutions [9]. A survey of the striking recent progress in Riemann problems was given

[7], which placed this work in its appropriate scientific context.
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4. Chaotic fluid Mixing

Chaos was not considered within the work of this project, but it does provide the

motivation for the final part of this report, three dimensional front tracking. Statistical

theories of chaotic fluid mixing were developed. The program here is to derive equations

for the interaction of elementary mixing modes and from this, to derive a statistical

model model which predicts mixing rates in the turbulent (chaotic) region. The program

is showing steady progress [10] and it appears that it will reach its major goals. Further

analysis of the chaotic mixing region will require three dimensional front tracking, and

parallel computing, which we now discuss.

5. Three Dimensional Front Tracking and Parallel Computing

The second main thrust of the work performed under this contract has been the

development of three dimensional front tracking capabilities. This activity was begun

only in the closing stages of this project, and publications completed dealt only with con-

ceptual questions of organization of data bases [5,6]. This early work has been contin-

ued, and considerable progress has been achieved with both surface and volume grids

and topological connectedness component labeling algorithms for front tracking in three

dimensions. For example the component labeling computation is based on a hash table

of triangle locations in each grid block, and is currently taking about 18 CPU minutes per

meg-triangle (million triangles) on a sun-4. After optimization of this routine, we antici-

pate times of 3-5 CPU minutes. Parallel computation, with nodes several times faster

than a sun-4 would then give this routine an acceptable timing (in seconds) per time step.
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